116(Sc)

UG-I/Math-II(H)/20

2020

MATHEMATICS

[HONOURS]

Paper: II

Full Marks: 100

Time: 4 Hours

The figures in the right-hand margin indicate marks. Symbols, notations have their usual meanings.

GROUP-A

(Differential Calculus)

[Marks: 35]

- 1. Answer any three questions:
- $1\times3=3$
- a) If $u = xyf\left(\frac{y}{x}\right)$, then find $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$.
- b) Find $\lim_{x \to 0+} \frac{1}{e^{\frac{1}{x}} + 1}$.
- c) Evaluate the following limit (if exist):

$$\lim_{x\to 0} \frac{3x + |x|}{7x - 5|x|}.$$

d) Find the nature of discontinuity of the function

$$f(x) = \begin{cases} (x+1)\sin\frac{1}{x} &, & x \in (-1, 1) \\ 0 &, & \text{otherwise} \end{cases}$$

at x=1.

- e) Give an example of a function which is continuously at a point but not differentiable at that point.
- 2. Answer any **two** questions:

 $2\times2=4$

- a) If $y = x^{n-1} \log x$ then prove that $y_n = \frac{(n-1)!}{x}$
- Prove that the curve $r^n = a^n \cos n\theta$ and $r^n = b^n \sin n\theta$ cut orthogonally.
- c) Find the derived function f' corresponding to the function $f:[0,3] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x & , & \text{when} \quad 0 \le x \le 1 \\ 2 - x^2 & , & \text{when} \quad 1 < x < 2 \\ x - x^2 & , & \text{when} \quad 2 \le x \le 3. \end{cases}$$

[Turn Over]

116(Sc)

[2]

3. Answer any three questions:

 $6 \times 3 = 18$

a) Let $f:[a, b] \to \mathbb{R}$ be such that f''(x) exists in [a, b] and f'(a) = f'(b). Prove that

$$f\left(\frac{a+b}{2}\right) = \frac{1}{2}[f(a)+f(b)] + \frac{1}{8}(b-a)^2 f''(c)$$

for some $c \in (a, b)$.

6

b) i) Find all asymptotes of the following curve:

$$y = \frac{x^2 - x - 2}{x - 2}$$

ii) Find a and b such that

$$\lim_{x \to 0} \frac{ae^{x} + be^{-x} + 2\sin x}{\sin x + x\cos x} = 2.$$
 3+3

- c) If $y = \log \left[x + \sqrt{1 + x^2} \right]$, then prove that $y_{2n}(0) = 0$ and $y_{2n+1}(0) = (-1)^n \cdot 1^2 \cdot 3^2 \cdot 5^2 \dots (2n-1)^2$.
 - $y_{2n}(0) = 0$ and $y_{2n+1}(0) = (-1)^n \cdot 1^2 \cdot 3^2 \cdot 5^2 \dots (2n-1)^2$.
- d) Define pedal equation of a curve. Show that the pedal equation of the curve $r\cos\left(\frac{\sqrt{a^2-b^2}}{a}\theta\right) = \sqrt{a^2-b^2} \text{ is } p\sqrt{b^2+r^2} = ar.$

116(Sc)

[3]

[Turn Over]

e) i) Find $\frac{\partial z}{\partial x}$ for the following function:

$$x^2 \sin(2y - 5z) = 1 + y\cos(6zx)$$

- ii) A function f is defined on [0,1] by f(0)=1 and
 - f(x) = 0 if x be irrational

$$=\frac{1}{n}$$
, if $x = \frac{m}{n}$ where m, n are

positive integers prime to each other. Prove that f is continuous at every irrational point in [0, 1] and discontinuous at every rational point in [0, 1]. 2+4

- 4. Answer any **one** question:
- $10 \times 1 = 10$
- a) i) If ρ_1 , ρ_2 be the radii of curvature at the end of a focal chord of the parabola $y^2 = 4ax \text{ then show that}$

$$\rho_1^{-\frac{2}{3}} + \rho_2^{-\frac{2}{3}} = (2a)^{-\frac{2}{3}}$$

- ii) Find the multiple points of the curve $x^4 4ax^3 4ay^3 + 4a^2x^2 + 3a^2y^2 a^4 = 0$
- iii) Discuss the nature of discontinuity at x=1 of the function

$$f(x) = Lt_{n\to\infty} \frac{\log(2+x) - x^{2n} \sin x}{1 + x^{2n}}$$

116(Sc)

[4]

- iv) If f is monotonically increasing function on [a, b] and a<c
b, then show that f (c+o) exists. 3+2+2+3=10
- b) i) If $x^2 + y^2 + z^2 2xyz = 1$ then show that $\frac{dx}{\sqrt{1 x^2}} + \frac{dy}{\sqrt{1 y^2}} + \frac{dz}{\sqrt{1 z^2}} = 0.$
 - ii) If $u = \log(x^3 + y^3 + z^3 3xyz)$ then show that $u_{xx} + u_{yy} + u_{zz} = -\frac{3}{(x+y+z)^2}$.
 - iii) If $f(x) = \begin{cases} 1 & \text{when } x \text{ is rational} \\ 0 & \text{when } x \text{ is irrational,} \end{cases}$

state with reasons, which of the following statement is true:

- p. f is continuous at rational points, but discontinuous at irrational points.
- q. f is continuous at irrational points and discontinuous at rational points.
- r. f is continuous every where
- s. *f* is discontinuous everywhere.

3+3+4=10

GROUP-B

(Integral Calculus)

[Marks: 25]

- 5. Evaluate any **one** of the following: $3 \times 1 = 3$
 - a) $\int \frac{dx}{(1-x)\sqrt{1-x^2}}$
 - b) $\int \sin^{-1} \left(\sqrt{\frac{x}{a+x}} \right) dx$
- 6. Answer any **two** questions: $6 \times 2 = 12$
 - a) Prove that

$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{\left(a^{2}\cos^{2}x + b^{2}\sin^{2}x\right)^{2}} = \frac{\pi}{4} \cdot \frac{a^{2} + b^{2}}{a^{3} \cdot b^{3}}; \ a, b > 0.$$

6

b) i) Find

$$\lim_{n \to \infty} \left[\frac{n}{n^2} + \frac{n}{1^2 + n^2} + \frac{n}{2^2 + n^2} + \dots + \frac{n}{(n-1)^2 + n^2} \right].$$

ii) Evaluate: $\int (\sin^{-1} x)^4 dx$. 3+3

[6]

116(Sc) [5] [Turn Over] 116(Sc)

c) Evaluate:

3 + 3

i)
$$\int \frac{dx}{\sin(x-a)\sin(x-b)}$$

$$ii) \qquad \int \frac{x^2 + 2x + 3}{\sqrt{1 - x^2}} dx$$

7. Answer any one question:

 $10 \times 1 = 10$

- a) i) Find the moment of inertia of a thin uniform lamina in the form of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about its axes.
 - ii) Find the volume of the solid obtained by the revolution of the cissoid $y^2(2a-x) = x^3$ about its asymptote.
 - iii) If $u_n = \int_0^1 x^n \tan^{-1} x \, dx$, prove that for n > 2, $(n+1)u_n + (n-1)u_{n-2} = \frac{\pi}{2} \frac{1}{n}. \qquad 3+4+3$
- b) i) If $I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx$, n being a positive integer greater than 1, then show that

116(Sc)

[7]

[Turn Over]

$$I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$$
.

Hence find the value of $\int_{0}^{\frac{\pi}{2}} x^{5} \sin x \, dx$.

ii) Find the volume of the solid generated by revolving the cardioide $r = a(1 - \cos \theta)$ about the initial line. 6+4

GROUP-C

(Differential Equation-I)

[Marks: 40]

8. Answer any **two** questions:

 $1 \times 2 = 2$

Determine the order and degree of the differential equation

$$\left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{\frac{3}{2}} = \frac{1}{1 + \frac{dy}{dx}}.$$

b) Check whether the differential equation

$$(x^2 - 2xy - y^2)dx - (x + y)^2 dy = 0$$

is exact.

116(Sc) [8]

c) Determine Wronskian of the functions

$$e^{x}$$
, e^{2x} , e^{3x} .

- 9. Answer any **two** questions: $2 \times 2 = 4$
 - a) Find the orthogonal trajectories of the family of curves $xy = a^2$.
 - b) Solve the equation: $x dy y dx \cos \frac{1}{x} dx = 0$.
 - c) Show that the substitution $x = \sin h z$ transforms the equation $(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 4y$ into $\frac{d^2y}{dz^2} = 4y$.
- 10. Answer any **four** questions:
 - a) Solve the following differential equation

$$(x+a)^2 \frac{d^2y}{dx^2} - 4(x+a)\frac{dy}{dx} + 6y = x$$
.

 $6 \times 4 = 24$

b) Find the eigen values and eigen functions of the equation

$$\frac{d^2y}{dx^2} + \lambda y = 0, \ 0 \le x \le \pi$$

satisfying the boundary conditions y=0 at x=0 and $\frac{dy}{dx}=0$ at $x=\pi$.

116(Sc) [9] [Turn Over]

- c) Show that the system of co-axial parabolas $y^2 = 4a(x+a)$ is self orthogonal.
- d) Reduce the differential equation $y = 2px p^2y$ to clairant's form by the substitutions $y^2 = Y$ and x = X, and obtain the complete primitive and singular solution, if any.
- e) Solve the following differential equation by reducing to it's normal form:

$$\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 3)y = e^{x^2}.$$

f) Solve the differential equation

$$\frac{d^3y}{dx^3} + y = e^{2x} \sin x + e^{\frac{x}{2}} \sin \frac{\sqrt{3}}{2} x$$

- 11. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Determine whether the equation (1+yz)dx + x(z-x)dy (1+xy)dz = 0 is integrable. Also obtain the integral of the equation, if integrable.
 - ii) If y₁ and y₂ are two linearly independent integrals of the differential equation

$$\frac{d^2y}{dx^2} + p_1 \frac{dy}{dx} + p_2 y = 0$$

116(Sc) [10]

where p_1 , p_2 are functions of x, then show that

$$y_1 \frac{dy_2}{dx} - y_2 \frac{dy_1}{dx} = c e^{-\int p_1 dx}$$

where $c(\neq 0)$ is a constant. 4+6=10

- b) i) Reduce the differential equation $\sin^2 x \frac{dy}{dx} 2y = 0 \text{ to exact form and hence}$ solve it
 - ii) Solve: $\frac{dx}{dt} + 5x + y = e^{t}$ $\frac{dy}{dt} - x + 3y = e^{2t}$. 5+5=10

116(Sc) [11]